TRANSIENT GRADIENTAL FLOW OF A CONTINUOUS
MEDIUM WITH A POWER-LAW RHEOLOGICAL
BEHAVIOR AND A YIELD SHEARING STRESS

A. M. Makarov and V. G. Sal'nikov UDC 532.54:532.135

An iteration scheme is proposed for solving both the direct and the reverse problem of gra~
diental flow which develops in a continuous medium with a power-law rheological behavior and
a yield shearing stress.

Various emulsions and suspensions with mechanical properties very different than those of an in-
compressible Newtonian fluid are widely used in the technological processes of petroleum extraction and
petroleum chemistry, as well as in pewer plants and in many other branches of industry. This non-New-
tonian behavior becomes even more pronounced, as a rule, when the rate of a given process is increased,

Among the mathematical models of a continuous medium suitable for describing the flow of such
fluids is the rheological body which combines the properties of a power-law fluid (an Ostwald—de-Walls
fluid) with those of a Shvedov—-Bingham plastic [1, 2]. The rheological equation for such a medium, in the
case of a one-dimensional planar flow, is
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with the rheological parameter n.

The physical significance of Egs. (1) and (2) is as follows: when {71 > 1, the medium has either
dilatant or pseudoplastic properties; when |7| <7y, the medium moves as 2 rigid single body. The rheo-
logical equation written in the form (1) represents a generalization of Shul'man's three-parameter equa-
tion [31.

The development of a gradiental flow of a Shvedov—Bingham plastic (n = 1) was considered in [4-6].
Here the method of solution shown in [6] will be applied to the development of a gradiental flow of a medium
with a more complicated rheological behavior. '

We will consider the following problem. Let a continuous medium with the rheological behavior (1)-
(2) in a flat channel with fixed walls be set in motion at time t = 0 by a pressure gradient P = dp/8z which
varies with time.

The equation of one-dimensional planar flow for a continuous medium with an arbitrary rheological
behavior is '
® _pp (3)
ot ox
By virtue of symmetry in our case, it suffices to describe the state of the medium in the lower half of the

channel —a < x < 0 only, with the condition 8v/8x > 0 assumed to prevail. For the zone of viscous flow we
have from (1) .
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and integrating this expression with respect to variable x from —g to x yields
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under the condition of adhesion between fluid and channel wall v(—a) =

Inserting (4) into (3) and assuming that 7(x, t) under the integral sign is differentiable with respect to
variable t, we obtain for T (x, t) = 7(x, t)—7
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Integrating Eq. (5) with respect to variable x from x = y{t) to x, where functiori y(t) describes the location
of the interface between the viscous zone and the quasirigid core in the stream, we arrive at the functional
equation
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which has been derived from the condition of existence of a quasirigid core T(y, t) = 0.
Writing Eq. (5) for x = y(t) and using the condition of flow of a quasirigid core as a single body
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(a step-by-step derivation of this boundary condition can be found in [5, 6]), we obtain the second functional
equation
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In dimensionless form, (6) and (7) become
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with 8 = 7¢/P,a, ukx, t) = T(x, t)/P,a, the channel half-width ¢ taken as the characteristic dimension, P,

denotmg the characteristic value of the modulus of the pressure gradient, and the characteristic time
pP{1-n)/n g4 (t+n) /My,

Since the quasirigid core occupies the entire flow region at time { = 0, hence y(0) = —1 and the correct
solution to system (8) requires that

¢ (0) =

The iteration scheme for solving system (8) is sufficiently obvious in the case of either the direct or
the reverse problem of a developing gradiental flow.

Direct Problem., In the direct problem, for a known function ¢(t) = S it is required to construct

u =u(x, t) and y = y(t). Resolving the second of Egs. (8) with respect to y(t}), we easily obtain the iteration
scheme:
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Fig. 1. Qualitative pattern of convergence of the itera-
tion process for the direct problem with n = 0.5 and
o =1: y,(t) curves 1, 2, 3, 4) calculated for S = 0.2, 0.4,
0.6, and 0.8, respectively.

Fig. 2. Effect of the power-law exponent non the charac-
teristics of ‘planar flow with @ =1 and 8§ = 2: y,(t) curves
1, 2, 3, 4) calculated for n = 0.3, 0.5, 0.8, 1.0, respec-

tively.
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Fig. 3. Effectof param- 44() = — So0).

eter o on the characteris-

tics of flow in a flat chan- Following the iteration scheme (9)-(10), we have calculated the zeroth, the

nel, with n = 0.3 and S first, and the second approximation. For ¢ = (p(t) we use the relation
=0.2; yy(t)curves 1, 2, 3) 1+ of

calculatedfor @ = 1, 5, 10, o(f)=S [T ast’ (11)
respectively.

with which the transient behavior under various rates of increase of the
pressure gradient could be analyzed.

The results of these calculations are shown in Figs. 1-3. The effect of the plasticity parameter S
on the formation of a quasirigid core is indicated in Fig. 1; the effect of the rheological power-law exponent
n on the relation y = y(t) is indicated in Fig. 2; and the effect which the rate of increase of the pressure
gradient (parameter o) has on the displacement of the interface between the two flow zounes, as a function
of time, is indicated in Fig. 3.

Reverée Problem. In the reverse problem y = y(t) is assumed known, while functions u = u(x, t) and
@ = @(t) are sought. The iteration scheme becomes here:
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Fig. 4. Qualitativepattern of convergeace of the iterationprocess
for the reverse problem, depending on the variation of respective
parameters: (a) curves 1, 2, 3, 4) calculated for o = 1, 3, 5, 10,
respectively, with n = 0.25 and S = 0.8; (b) curves 1, 2, 3, 4) cal-
culated for n = 0.25, 0.7, 1.0, 1.4, respectively, witha =1 and S
= 0.6 (curves 1, 2, 3, 4 for the case 4b begin to differ in the third
and the subsequent places after the decimal point); (c) curves 1,
2, 3, 4) calculated for S8 = 0.2, 0.4, 0.6, 0.8, respectively, with
n=05anda = 3.

Following the iteration scheme (12)-(13), we have calculated the zeroth, the first, and the second
approxmation. For more specific results we used the relation

y (), = —IS + (S — 1) exp/(— at), (19
with parameter o describing the rate of increase of function y = y(t).
The results of these calculations for the reverse problem are shown in Fig. 4.

The effect which the rate of increase of the pressure gradient (parameter «) has on changing the
boundary condition at the channel walls, as a function of time, is indicated in Fig. 4a; the effect of the
rheological power-law exponent n on the function ¢ = ¢ {(t) is indicated in Fig. 4b; and the qualitative pat~
tern of convergence of the iteration process is indicated in Fig. 4c.

In conclusion, we wish to point out the regularity of the convergence pattern, equally applicable to
both the direct and the reverse problem. The convergence improves, within the range of parameter values
considered here (0.2 =8 =10.8; 1 =¢ =10; 0.25=n = 1.4), as the value of the plasticity parameter S in-
creases but worsens with higher values of the parameters o and n.

NOTATION

is the time;

is the density;

is the tangential shearing stress;

is the yield shearing stress;

is the characteristic stress in this problem;

is the dynamic viscosity;

is the velocity of the fluid;

is the transverse space coordinate;

is the characteristic channel dimension;

is the pressure gradient;

is the longitudinal space coordinate;

is the power-law exponent;

is the plasticity parameter;

is a parameter which characterizes the rate of increase of the test function;
is the modulus of the pressure gradient;

is the characteristic value of the modulus of the pressure gradient;

y(t) is the location of the interface between the viscous zone and the quasirigid core;
k is the consecutive number of iterations.
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